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■ Abstract 

It is well known that autoimmunity associated with the 
onset of insulin-dependent diabetes mellitus (IDDM) in-
volves the generation of autoreactive T and B cells. The 
findings that diabetics mount humoral and cellular immune 
responses against islet cell antigens (ICAs) have led to the 
testing of ICAs and their analogs as candidates for therapeu-
tic agents for better treatment of IDDM at its prediabetic 
and diabetic stages. Apart from this type of approach, vari-
ous immunological intervention strategies aimed at direct 
targeting of the autoreactive T cells have also been investi-

gated. The present review covers the ongoing aspects of 
these developments focusing on the preclinical findings 
made in nonobese diabetic (NOD) mice which have been 
commonly used as a disease model for human autoimmune 
diabetes. Other types of approaches involving the mobiliza-
tion of regulatory T cells to indirectly control or modulate 
the pathological activity of autoreactive T cells will not be 
discussed within this scope. 
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Introduction 

  DDM is a form of diabetes mellitus (DM) char- 
    acterized by the dysfunction of the pancreas to 

produce insufficient or no insulin. This disorder is 
caused by autoimmune-mediated destruction of the 
pancreatic β-cells. Over the years, it has been observed 
that autoimmunity associated with IDDM involves the 
participation of both B and T autoreactive lympho-
cytes. The evidence for B cell-mediated autoimmunity 
is based on the well reported findings that up to 98% 
of IDDM patients have antibodies against one or more 
of their own β-cell antigens. These include: Insulin [1]; 
the major of the 2 isoforms of glutamic acid decar-
boxylase (GAD) 65 [2]; two of the protein tyrosine 
phosphatases, insulinoma antigen-2 and insulinoma 
antigen-2β (IA-2 and IA-2 β) [3, 4]; the heterogeneous 
islet cell cytoplasmic antigens (ICAs) [5, 6]. A minority 
of IDDM patients also have serum antibodies to a 

glycosylated islet cell membrane antigen, GLIMA [7]. 
Recently, autoantibodies to other new antigens of pro-
tein tyrosine phosphatases, IA-2/ICA512 and IA-2 
β/phogrin, expressed by pancreatic islet cells, have 
been detected [8].  

The generation of autoantibodies to islet cells can 
be observed for as many as 10 years prior to the onset 
of clinical diabetes [9]. Despite this observation, the 
existence of autoantibodies is not solely sufficient to 
cause IDDM development. This conclusion is based 
on the finding that infants born of antibody positive 
IDDM mothers can remain free of disease despite the 
existence of serum autoantibodies to insulin, GAD and 
other islet cell antigens [10]. On the other hand, per-
sons with severe genetic B cell deficiency can still de-
velop IDDM [11]. Generally, the level of autoantibod-
ies correlates with the state of β-cell destruction [12, 
13]. As such, they can therefore serve as indicators for 
autoimmune diabetes. A low level of GAD-specific 
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autoantibodies is associated with a slow breakdown of 
β-cell function, while a high level of autoantibodies to 
IA-2 together with the maturation of autoantibody 
responses elicited against ICAs or GAD are signs for 
more severe and imminent β-cell failure [14]. 

Today it is well-known that IDDM is mediated by 
autoreactive T cells. The most direct indication of this 
finding is due to the examination of biopsy tissues 
obtained near the time of IDDM diagnosis, which 
show that the islets are infiltrated with activated T 
cells, primarily of the CD8+ population but also, to a 
lesser extent, CD4+ cells and macrophages as well [15-
18]. The association of IDDM with the major histo-
compatibility complex (MHC)-associated susceptibility 
gene locus, IDDM1, is also well reported [19]. Recur-
rence of organ-specific autoimmunity is responsible 
for β-cell destruction in diabetics transplanted with a 
pancreatic graft donated by their discordant, non-
diabetic monozygotic twins [20]. Furthermore, IDDM 
is transferable to non-diabetics given bone marrow 
transplant donated by diabetic HLA-identical siblings, 
or allogeneic donors [21, 22]. 

Autoreactive CD4+ cells of the Th1 subset are po-
tentially capable of directly and indirectly causing islet 
damage: Directly via the release of cytotoxic mediators 
such as nitric oxide or oxygen radicals [23], and indi-
rectly through the secretion of IL-2 and IFN-γ by acti-
vating autoreactive CD8+ T cells and macrophages 
leading to their infiltration of the islets [24]. In this 
regard, characterization and quantitation of autoreac-
tive T cells in humans are important for the develop-
ment of an improved diagnosis of IDDM, and inter-
vention strategies for arresting disease progression. 
However, direct detection of autoreactive T cells in 
IDDM is more difficult than the detection of autoanti-
bodies. The reason is that CD4+ and CD8+ autoreac-
tive T cells generated in the course of IDDM devel-
opment are only present at very low frequencies in the 
circulation of subjects with recent disease onset [25, 
26]. Assays dependent on in vitro expansion to allow 
the detection of autoreactive CD4+ T cells in the pool 
of peripheral blood leucocytes (PBL) of diabetics are 
used in most studies. When employing in vitro prolif-
eration assays, PBL of individuals with recent onset of  
IDDM respond to human insulin [27], a spectrum of 
islet cell antigens [28-30], and GAD [31]. Regarding 
detection, GAD-specific autoreactive T cells  can be 
generated and cloned from peripheral T cells of recent 
onset IDDM patients who are carrying the disease-
susceptible HLA-DR alleles [32]. Furthermore, en-
dogenous GAD fragments presented by IDDM-

associated HLA class II molecules can be isolated [33]. 
The identification of HLA-DR-restricted GAD epi-
topes facilitates the in vitro expansion of peripheral 
GAD-specific T cells from individuals with IDDM at-
risk and subjects with IDDM and the subsequent 
demonstration of the αβTCR specificity of the autore-
active T cells against the corresponding ligand using 
the HLA-class II tetramer analysis procedure [34]. 

Some laboratories focus on the characterization of 
diabetogenic CD8+ T cells. So far, autoreactive CD8+ 
T cells have been detected in humans against two β-
cell antigens, namely GAD 65 and preproIAPP (pre-
cursor human islet amyloid polypeptide protein), 
which are cosecreted with insulin in subjects recently 
diagnosed with IDDM. GAD 65-specific cytotoxic T 
cells (CTLs) carrying the disease-associated allele, 
HLA-A2, following in vitro expansion with a HLA-A2 
binding peptide, have been generated from PBL of 
these individuals [35]. A recent study describes the 
presence of an autoreactive CD8+ subset in the circula-
tion of recently diagnosed patients that recognize a 9 
amino acid long immunodominant epitope of pre-
proIAPP in the context of HLA-A2 using an IFN-γ-
based ELISPOT assay [36]. The feasibility to detect 
and quantitate circulating autoreactive T cells directly 
at early disease onset can undoubtedly serve as a valu-
able tool for improved diagnosis of IDDM, and the 
development of better tolerogens which can be used to 
arrest IDDM onset. 

Immunological intervention strategies 

Normally, IDDM is diagnosed by the time 70-90% 
of the patient’s islet cells are already destroyed. Over 
the years, immunological intervention strategies have 
been tested for their effectiveness at the prediabetic 
stage of the disease to prevent its subsequent onset, or 
at the early stage of the disease to halt further assault 
on the pancreatic islets in order to allow the remaining 
function of the organ to be preserved. A common 
approach to these strategies is to target the autoreac-
tive T cells directly. Several of these developments do 
work primarily in the NOD mouse model of human 
diabetes, some have reached the clinical trial stage. The 
remaining part of this review will discuss the ongoing 
development of these strategies and the rationale be-
hind why they are aimed at interfering with the activity 
and function of autoreactive T cells believed to be 
involved in causing IDDM. 
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Intervention at prediabetic stage 
1. Autoantigen (insulin and GAD)-induced tolerance 

In view of the detection of autoreactive T cells 
showing specificities against islet cell antigens, inter-
vention strategies involving the administration of solu-
ble and formulated islet cell antigens aim at tolerizing 
these autoreactive T cells. For this type of approach, 
three antigens, namely insulin, the glutamic decarboxy-
lase (GAD65) and heat shock protein (hsp) 60, have 
attracted the most attention since diabetics are known 
to mount immune responses against them. It has been 
shown in preclinical studies that administration of the 
native form or analogs of these antigens induce T cell 
mediated regulatory mechanisms capable of preventing 
the development of autoimmune diabetes in the NOD 
mice. Thus, prediabetic animals treated with insulin are 
less susceptible to subsequent IDDM development 
[37, 38]. Induction of insulin-specific regulatory T 
lymphocytes is protective since untreated mice that 
accept T cells from those administered with insulin are 
also protected from disease development. The protec-
tion mechanism can be attributed to the production of 
immuno-suppressive cytokines, such as IL-4, IL-10 
and TGF-β that exert negative regulation of the diabe-
togenic Th1 cells [39]. 

Prediabetic NOD mice subcutaneously injected 
with a recombinant version of GAD65 show a cellular 
response dominated by the secretion of IFN-γ by the 
GAD65-specific Th1 cells. Interestingly, additional 
injection of GAD65 is able to change the response 
deviating towards the production of Th2 cytokines, IL-
4 and IL-10 that suppress the pathogenic role medi-
ated by the autoreactive Th1 T cells [40]. 

In 1998 a previous pilot study reported that insulin 
therapy is effective in preventing IDDM onset in a 
significant number of high-risk individuals [41]. How-
ever, clinical trials conducted as part of the Diabetes 
Prevention Trial-Type 1 (DPT-1) have recently re-
ported that both low-dose insulin administration using 
a similar protocol to that in the pilot study, as well as 
the oral intake of insulin capsules are unable to protect 
high-risk subjects from developing the disease [42]. 
The reason for this outcome can only be postulated at 
the present time to be attributable to several factors, 
such as a difference in the study groups or insufficient 
administration of insulin for making a difference [43]. 
It has not been shown in a study conducted by the 
American Diabetes Association that intervention with 
the GAD65 molecule (Diamyd) is able to offer clear 
clinical benefit. The immunogen is currently being 

evaluated for its effectiveness to stop the onset of 
LADA (latent autoimmune diabetes of adults) [44]. 

2. Tolerance induction with second generation autoantigens (insu-
lin & GAD peptides) 

The function of a subset of pathogenic T cells can 
be modulated via the engagement of their αβTCR with 
a natural (depending on the mode of administration) 
or an artificial ligand in association with the respective 
MHC class I or II molecule. A fragment comprising 
the amino acid residues 9-23 of the human insulin B-
chain contains a promiscuous immunodominant T cell 
epitope that can be recognized by CD4+ autoreactive T 
cells of diabetics and the NOD mice. A proportion of 
CD4+ T cells infiltrating the diseased islets of the dia-
betic mice responds to peptide B:9-23, suggesting that 
autoimmunity directed against this site of the human 
insulin B-chain significantly contributes to IDDM [45, 
46]. Subcutaneous injection of pepitde B:9-23 formu-
lated in IFA or intranasal administration of the peptide 
is capable of conferring protection against IDDM 
development in prediabetic NOD mice. The protec-
tion is associated with modulation of autoreactive T 
cell function as judged by their reduced capability to 
proliferate to peptide B:9-23 [47, 48]. 

More recently, an artificial version of peptide B:9-
23, NBI-6024, containing alanine substitutions at posi-
tions 16 and 19 of the parent fragment has been tested 
for its effectiveness in arresting IDDM. The altered 
ligand inhibits the proliferation of B:9-23-specific 
autoreactive T cells obtained from the NOD mice. 
Furthermore, subcutaneous injection of soluble NBI-
6024 is capable of protecting both prediabetic and 
diabetic NOD mice from disease development. The 
mechanism of protection has been attributed to im-
mune-deviation based on the observation that NBI-
6024 preferentially induces T cells of the vaccinated 
animals to produce Th2 immunosuppressive cytokines, 
IL-4 and IL-10 (49). 

In tests NBI-6024 shows sufficient safety levels to 
reach a phase I clinical trial. It will be interesting to 
know whether the strategy adopted to target an immu-
nodominant population of diabetogenic T cells may 
prove to be more effective in preventing IDDM de-
velopment than its native parent protein. In this re-
gard, a separate report has recommended that the 
soluble immunogen would be best administered at low 
doses to avoid/minimize the development of anaphy-
laxis [50]. 

In addition to its ability to modulate the function of 
autoreactive CD4+ T cells, the fragment comprising 
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the amino acid residue 15-23 within NBI-6024 also 
appears to contain an immunodominant murine MHC 
class I-restricted T cell epitope. Murine islet resident 
diabetogenic CD8+ T cells are able to recognize pep-
tide B:15-23 [51]. Despite the fact that an efficacy 
study has not been performed with peptide B:15-23, 
the results of a recent study suggest that vaccination 
with an altered influenza virus haemagglutinin (HA) 
MHC class I-restricted ligand can result in modulating 
the activity of diabetogenic HA-specific CD8+ T cells 
in the prevention of diabetes onset in a transgenic 
mouse model. Efficacy of the therapy is associated 
with decreased infiltration of the pathogenic T cells to 
the islets, and reduced cytotoxic potential of the effec-
tor cells [52]. 

GAD65 epitopes have similarly been investigated 
for their capabilities to arrest IDDM in the NOD 
mouse. The rationale for this approach is based on the 
finding that spontaneous disease onset in the diabetic 
animal is associated with T cell reactivities directed 
against various epitopes of GAD65. Intervention of 
GAD65-specific autoreactivity at the prediabetic stage 
may therefore be an effective means for IDDM pre-
vention. We already know that certain epitopes of 
GAD65 are capable of arresting IDDM in NOD mice. 
GAD65 246-266, but not GAD65 509-528 or GAD65 
524-543 peptide, given in PBS to pregnant animals 
using the ip (intraperitoneal) route induce tolerance of 
the offspring in terms of resistance against diabetes 
development. Surprisingly, vaccination with a mixture 
of GAD65 509-528 and GAD65 524-543 peptides, but 
not a triple combination of GAD65 509-528, GAD65 
524-543 and GAD65 246-266 is also effective. The 
reason for this outcome is unclear at the moment. 
Overall, more investigation is needed to establish a 
clearer picture of the effectiveness of GAD peptides in 
IDDM prevention [53-55]. 

3. Antibody-induced modulation  

Another approach to prevent neonatal NOD mice 
from developing IDDM involves the administration of 
a monoclonal antibody directed against the CD3 com-
plex non-covalently associated with the αβTCR ex-
pressed on conventional CD4 and CD8 subsets of T 
cells. Upon engagement of the αβTCR with its foreign 
ligand, or ligand derived from self antigen (in the case 
of autoreactive T cells), CD3 can mediate signal trans-
duction events leading to the activation of T cells. 
Thus, binding of an anti-CD3 antibody to CD3 can be 
expected to affect the acitvity of autoreactive T cells in 
causing damage to the pancreatic β-cells. Preclinical 

studies demonstrated that young streptozocin (STZ)-
induced diabetic CD1 mice administered with the non-
mitogenic [F(ab’)2] fragment of a monoclonal antibody 
directed against the ε chain of human CD3 are pre-
vented from developing insulitis. Protection is attrib-
uted partly to the depletion of some T cells, and partly 
to the antibody being capable of inducing anergy to a 
significant proportion of T cells as judged by their 
failure to produce the Th1 type of cytokines such as 
IL-2 and IFN-γ [56]. 

4. Antibody-blocking of autoreactive T cell activation 

Similar to conventional T lymphocytes, full activa-
tion of autoreactive CD4+ and CD8+ T cells requires 
both the engagement of its αβTCR with an antigenic 
peptide in association with the respective MHC class I 
or II molecules, as well as a second signal provided by 
co-stimulation. A co-stimulatory signal will be gener-
ated  by the interaction of CD28 molecules expressed 
on naïve T cells with its ligands, B7-1 (CD80) and B7-2 
(CD86), presented on APCs. Of the two ligands, B7-2 
plays a more dominant role in interacting with CD28 
to trigger T cell activation [57, 58]. In NOD mice, the 
engagement of CD28 with B7-1 and B7-2 are critical 
for the control of spontaneous diabetes development. 
Animals without CD28, and B7-1 with B7-2, have a 
reduced number of CD4+CD25+ regulatory T cells and 
succumb to clinical disease faster than their wild-type 
counterpart [59]. 

Reagents that bind B7-1 and/or B7-2 have been 
evaluated for their effectiveness to block the activation 
of autoreactive T cells in the course of IDDM preven-
tion in NOD mice. Indeed, prediabetic NOD mice of 
2-3 weeks of age given multiple doses of an anti-B7-2 
monoclonal antibody over a period of 8 weeks are 
protected from subsequent development of diabetes. 
Animals subjected to a similar regimen by injecting 
them with a fusion protein, CTLA-4Ig comprising the 
extracellular domain of CTLA-4 and the fragment of 
human IgG1, which binds to B7-1 and B7-2 to inhibit 
costimulation, are also protected from the onset of 
IDDM [60-62]. Fine analysis of the NOD mice sub-
jected to the entire course of anti-B7-2 and CTLA-4Ig 
treatments identifies that the reagents inhibit the de-
velopment of clinical disease rather than insulitis be-
cause animals not treated on weeks 6 to 8 (final phase 
of therapy) succumb to IDDM [63]. Surprisingly, the 
administration of an anti-B7-1 monoclonal antibody 
mediates an opposite effect by triggering an accelerated 
onset of the disease not only in the diabetes-prone 
female mice, but in the normally diabetes-resistant 
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male mice as well. Apparently, disease exacerbation is 
due to the presence of pancreatic T cells displaying 
higher expression of CD69 indicating that T cells are 
in a higher activated state than those found in the pan-
creas of animals treated with the anti-B7-2 antibody 
and CTLA-4Ig. The contrasting outcome obtained 
from these studies can be attributed to the differential 
expression of B7-2 and B7-1 on lymphoid cells. Given 
that B7-2 is expressed more rapidly than B7-1 on 
APCs when they become activated [64], blocking of 
B7-2 seems essential for inhibiting its interaction with 
CD28 to arrest diabetes development. Results obtained 
from studies of B7-2 knock-out NOD mice similarly 
show that co-stimulation in the total absence of B7-2 
participation is capable of delaying insulitis develop-
ment until late in the adulthood of the animals. This is 
associated with a redistribution of pathogenic T cells 
to the spleens instead of the islets of the mice. Despite 
the observed clinical benefit, T cell differentiation and 
activation without B7-2 in the B7-2 knock outs gener-
ates neuropathy characterized by severe inflammation 
of the peripheral nerves which precedes insulitis de-
velopment [64]. On the other hand, blocking of B7-1 
expressed on activated T cells would inhibit its interac-
tion with CTLA-4 leading to a failure in generating a 
regulatory signal to control IDDM development. 

Overall, co-stimulatory pathways leading to the 
regulation of T cell activation and function are com-
plex, and further in-depth investigation is required to 
modify them for the intervention of IDDM. 

Intervention at the stage of overt diabetes 

1. Autoantigen (hsp)-induced tolerance 

In the course of spontaneous diabetes develop-
ment, NOD mice develop an immunodominant 
autoreactive T cell response directed against a frag-
ment comprising the amino acid residues 437-460 of 
hsp 60. T cells generated against a peptide, p277, en-
coding this sequence of hsp60 are diabetogenic based 
on the observation that recipient mice adoptively 
transferred with the cells turn diabetic [65]. Thus, tar-
geting this p277-specific subset of T cells to modulate 
its pathological function may prove useful for arresting 
IDDM. The spontaneous development of diabetes in 
adult NOD mice is preventable by a single injection of 
a hsp60 peptide, p277, formulated in IFA (Incomplete 
Freund’s Adjuvant). Efficacy is associated with a re-
duced infiltration of IFN-γ-secreting T cells to the 
islets of the p277 treated mice [66, 67]. Follow up stud-

ies have demonstrated that T cells of p277 injected 
NOD mice secrete disproportionate amounts of IL-4 
and IL-10 to down-regulate Th1 responses elicited not 
only to the immunizing antigen, but to GAD65 and 
insulin as well. Apart from the p277 encoded epitope, 
another study reports the discovery of another hsp60 
epitope represented by the sequence 166-185 of the 
protein that is effective in arresting diabetes in the 
NOD mice [68]. 

Peptide p277 is now being tested in a double blind 
phase II clinical trial. Subjects with recent onset of 
IDDM subcutaneously injected with two doses of the 
peptide maintain their insulin secretion based on C-
peptide measurement, and reduce their need for ex-
ogenous insulin as compared to the placebo group 
[69]. 

2. Antibody-induced modulation 

Several antibodies directed against lymphocytic an-
tigens have been assessed for their effectiveness in 
halting disease progression in NOD mice. Apart from 
its effectiveness in preventing IDDM onset, multiple 
administration of the human CD3ε chain-specific 
monoclonal antibody is capable of conferring long-
term protection in adult NOD mice with overt diabe-
tes. Adult NOD mice injected daily with a low-dose 
regimen of 5.0 µg of the antibody for 5 days are pro-
tected from accelerated IDDM development induced 
by cyclophosphamide. The same therapeutic applica-
tion is also effective in arresting spontaneous diabetes 
in adult animals for a significantly long period of time. 
Apparently, protection is not associated with the clear-
ance of diabetogenic CD8+ cells in the pancreatic islets 
of the animals [70]. The efficacy generated by anti-
CD3 treatment is mediated primarily by TGF-β that is 
produced by a subset of CD4+CD25- regulatory T 
cells, as shown in a follow-up study using a similar 
protocol with a high-dose regimen of 50.0 µg of the 
antibody [71]. Protection provided by anti-CD3 anti-
body administration is also attributed to the induction 
of anergy in autoreactive CD8+ cells [72]. The safety of 
a humanized version of the murine anti-CD3 mono-
clonal antibody, hOKT3γ1Ala-Ala, has been evaluated 
and subsequently approved for phase one trials in 
patients with recent-onset of IDDM [73]. So far, the 
results obtained from this trial are encouraging as 
judged by the majority of the treated patients being 
able to maintain and improve their insulin secretion. 
Interestingly, one parameter associated with the ob-
served efficacy is an increase in the number of CD8+ 
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cells in the treated subjects [74]. The regula-
tory/effector function of these cells remains to be 
investigated. 

NOD mice can also be protected from spontane-
ous diabetes development when they are treated with 
the non-depleting anti-CD4 monoclonal antibody, 
YTS177.9 [75, 76]. The protection mechanism seems 
to be due to the antibody acting directly against the 
autoreactive T cells since mice with infiltrates of CD4+ 
diabetogenic T cells in their islets are also protected 
upon the administration of the antibody. Follow-up 
studies suggest that YTS177.9 binding affects autoreac-
tive T cells by altering their capability to secrete pro-
inflammatory cytokines [76, 77]. 

3. Antibody blockade of autoreactive T cell migration 

Antibodies capable of interfering with the traffick-
ing of autoreactive mononuclear cells to the pancreatic 
islets have been evaluated for arresting the ongoing 
diabetes in the NOD mice. Migration of lymphocytes, 
including autoreactive T cells, requires chemoattrac-
tants and their adhesion to endothelial cells for migra-
tion from the circulation into the tissues and organs 
[78]. The integrin, α4β7, is expressed on the infiltrating 
mononuclear cells during the process of insulitis de-
velopment [79]. A monoclonal antibody against the α4-
subunit of the heterodimer, α4β7, or VCAM-1 (the 
ligand for the integrin), is able to block the entry of 
insulitis-causing mononuclear cells to the islet of the 
diabetic mice [80, 81]. 

CD43 (leucosialin), expressed as a 95-135 kDa 
highly glycosylated protein on T cells, is an adhesion 
molecule [82]. The administration of a monoclonal 
antibody against CD43 is effective in preventing the 
onset of diabetes in newborn and adult NOD mice 
[83]. Protection is attributed to the inhibition of 
autoreactive T cells migrating to the pancreas. 

4. Antibody-induced deletion 

Results of earlier studies show that the administra-
tion of mono-specific antibodies against MHC class I 
and CD8 molecules are effective in preventing further 
β-cell destruction in the IDDM-prone male adult 

NOD/Shi/Kbe and female NOD mice, respectively 
[84, 85]. These observations are associated with severe 
T cell depletion as judged by the absence of CD8+ cells 
in the spleen and islets of the experimental mice. There 
has been no follow-up in the further development of 
these reagents for the prevention of IDDM in humans. 

5. αβTCR-targeted tolerance induction 
A separate approach using a fusion protein com-

prising a MHC class II molecule linked to a specific 
altered ligand has been tested preclinically for its effec-
tiveness in preventing IDDM progression. The ligand 
of a chimeric construct, BDC2.5-IAg7, binds well to a 
subset of CD4+ diabetogenic T cells (BDC2.5). Ad-
ministration of BDC2.5-IAg7 is able to confer protec-
tion to NOD.BDC2.5 TCR transgenic mice trans-
ferred with the BDC2.5 cells. Efficacy is attributed to 
the ability of the fusion protein to induce death and 
anergy to some of the BDC2.5 cells and to modulate 
the remaining ones to secrete more of the Th2 type of 
anti-inflammatory cytokines [86]. 

Summary 
The advent of our understanding of IDDM has 

opened up a variety of opportunities for us to utilize in 
the search for better treatment and prevention of the 
disease. Improved detection of autoreactive T cells in 
patients with IDDM may offer better and earlier diag-
nosis of the disease. Improved characterization of 
diabetogenic T cells can be applied to the development 
of more effective intervention strategies to arrest the 
spontaneous progression of IDDM. Despite the failure 
of the insulin trials, results revealed by the clinical trial 
conducted with the human anti-CD3 specific mono-
clonal antibody are encouraging, and there are promis-
ing findings from other preclinical studies as well. Al-
though not covered in this review, it needs to be men-
tioned here that the role of regulatory T cells in the 
control of IDDM is also becoming clearer, and ways to 
stimulate them to exert positive immuno-regulation for 
protection against IDDM are emerging. Let us hope 
that some more of these strategies will make their way 
through to clinical assessments. 
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