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■ Abstract 
The relative risk of type 1 (autoimmune) diabetes mellitus 
for a sibling of an affected patient is fifteen times that of the 
general population, indicating a strong genetic contribution 
to the disease. Yet, the incidence of diabetes in most West-
ern communities has doubled every fifteen years since the 
Second World War - a rate of increase that can only possibly 
be explained by a major etiological effect of environment. 

Here, the authors provide a selective review of risk factors 
identified to date. Recent reports of linkage of type 1 diabe-
tes to genes encoding pathogen pattern recognition mole-
cules, such as toll-like receptors, are discussed, providing a 
testable hypothesis regarding a mechanism by which genetic 
and environmental influences on disease progress are inte-
grated. 
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Introduction 
 

  ype 1 (autoimmune) diabetes (T1D) is an endo- 
  crine disease in which the body’s immune system 

gradually destroys the insulin-producing β-cells in the 
pancreas, leading to a loss of insulin secretion and hy-
perglycemia. Progression from the pre-clinical stage of 
β-cell autoimmunity, known as insulitis, to established 
diabetes can take up to a decade [1,2]. Globally, T1D 
affects between 10-20 million people. Forty percent of 
cases develop the onset of the disease before the age 
of 20, making it one of the most common severe 
chronic childhood illnesses [3-5]. T1D is the leading 
cause of end-stage renal disease, blindness, and ampu-
tation in many communities, and is a major cause of 
cardiovascular disease and premature death in the gen-
eral population [6]. 

It is not clear what initiates the autoimmune cas-
cade leading to T1D, but it is certain that both genetic 

and environmental factors contribute to the risk of 
disease. Progress in the understanding of the patho-
genesis of T1D has been complicated by the large 
number (>20) of genes involved. It appears that most 
linkage peaks located to date are the product of multi-
ple linked loci, each of which confers relatively little 
risk. The limited effect of each locus has required very 
large sample sets to generate sufficient analytic power. 
Furthermore, many linkage peaks have not been repli-
cated in subsequent studies, raising the possibility that 
they are dependent on local environmental conditions, 
or are affected by parental imprinting. 

Animal models of human T1D, such as the NOD 
mouse [reviewed in 7] and BB rat [reviewed in 8], were 
originally applied to help develop paradigms and 
methodological tools for the dissection of this com-
plex genetic trait. In several cases, correlation of syn-
tenic linkage peaks has suggested, and in some cases 
molecular analysis has supported, the possibility that in 
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both the animal model and the human disease, similar 
polymorphisms in the same genes affect disease risk. 
The animal models have three other advantages in this 
context. Firstly, as they are inbred, large numbers of 
segregating progeny can be produced, greatly increas-
ing the statistical power of genetic analyses. Secondly, 
mouse strains, and to a lesser extent rat strains, are 
highly amenable to recombinant genetic approaches, 
permitting allele exchange experiments to formally test 
hypotheses relating to causality. Finally, as the housing 
conditions of laboratory animals can be exactly con-
trolled, these models provide a platform to test hy-
potheses relating to gene/environment interactions in 
determining the risk of disease. This review provides a 
selective summary of proposed genetic and environ-
mental risk factors for type 1 diabetes. 

Monogenic autoimmunity 
Valuable progress in the understanding of the 

pathogenesis of autoimmune disease (AID) has come 
with the recognition of several genes in humans that 
underlie Mendelian forms of the disease. In particular, 
two very rare syndromes are now genetically character-
ized: autoimmune polyendocrine syndrome type 1 
(APS-1; also termed autoimmune polyendocrinopathy 
candidiasis ectodermal dystrophy, APECED) and im-
mune deregulation, polyendocrinopathy, enteropathy, 
X-linked (IPEX). Both syndromes are associated with 
the development of immune mediated diabetes - neo-
natal diabetes for the IPEX syndrome, and about 20% 
of patients with APS-I develop diabetes as children or 
young adults [9, 10]. 

APS-1 
The APS-1 syndrome is inherited as an autosomal 

recessive disorder [11] and results from mutations of 
the AIRE (autoimmune regulator) gene [12] that is lo-
cated on chromosome 21q22 [13, 14]. Through studies 
of targeted mutant Aire-deficient (knockout) mice, we 
know that Aire’s protein product acts as a thymic tran-
scription factor for numerous genes [15], including 
some related to T1D, such as hormones (e.g. insulin) 
and growth factors (e.g. insulin-like growth factor 2). 
Aire knockout mice on a 129/C57BL/6 background 
develop high titres of autoantibodies reactive with 
multiple organs as well as T cell infiltrates of multiple 
organs, but do not develop diabetes. When back-
crossed to the B10.Br background for 2 generations, 
Aire deficiency was associated with an increased inci-
dence of diabetes in a model involving the transgenic 
expression of hen egg lysosyme (HEL) in the pancre-

atic islets and a HEL peptide-specific T cell receptor 
on T cells [16]. Thus, an attractive hypothesis is that 
mutations of the AIRE gene (e.g. APS-1 syndrome) in 
humans may cause reduced “peripheral antigen” ex-
pression in the thymus thereby decreasing the induc-
tion of thymic central tolerance to these antigens [17, 
18]. 

IPEX 
IPEX syndrome results from mutations of the 

FOXP3 gene [19-21], which is located on chromosome 
Xp11.23. All disease-associated mutations appear to 
disrupt gene function causing a phenotype in hemizy-
gous males but not in heterozygous females. FOXP3 
encodes the protein scurfin, which belongs to the 
Forkhead family of winged-helix transcription factors 
[22, 23]. Its expression is largely restricted to T cells 
with a regulatory function (Treg cells), suggesting a 
role in the development of these cells [24-26]. Human 
Hassall's corpuscles express thymic stromal lympho-
poietin (TSLP), which activates thymic CD11c-positive 
dendritic cells to express high levels of CD80 and 
CD86 molecules. These TSLP-conditioned dendritic 
cells are then able to induce the proliferation and 
differentiation of CD4+CD8-CD25- thymic T cells into 
CD4+CD25+Foxp3+ Tregs, which suppress autoim-
mune T cells and help to maintain tolerance to self 
[27]. 

At present, there is little or no indication that 
polymorphisms at either AIRE or FOXP3 contribute 
to the common forms of T1D. While one small case-
control study has reported an association of the 
FOXP3 gene with T1D in Japanese patients [28], an-
other study in Sardinian families found no evidence 
when com-pared with a case-control cohort [29]. 

Polygenic type 1 diabetes 
To date, there is at least suggestive evidence that 

more than thirty genes contribute to the susceptibility 
of T1D development. Loci for which reasonable con-
firmation has been obtained, or show significance in 
one of the two major publications reporting multiple 
genome-wide linkage scans ([30] and [31]; reporting 
data from 767 and 1,435 multiplex families respec-
tively), include 6p21 (IDDM1), 11p15 (IDDM2), 2q31-
q33 (IDDM12), 10p11-q11 (IDDM10), 6q25 (IDDM5), 
1p13 and 16q22-24. The three chromosomal regions 
with consistently significant evidence of association 
with T1D are the HLA region at 6p21.3 (IDDM1) [32, 
33], the INS region at 11p15 (IDDM2) [34, 35] and the 
CTLA4/CD28 region at 2q31-q33 [36-39]. 
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The major histocompatibility complex (MHC) 

The MHC region on human chromosome 6p21 has 
been identified as a critical susceptibility locus for 
many human AIDs, including T1D [40]. Through 
studies done on animals, it has been hypothesized that 
certain MHC alleles are less efficient at presenting self-
peptides to the developing T cells in the thymus, so 
that negative selection fails [41-44]. Human genetic 
predisposition to T1D is strongly associated with 
HLA-DQβ, which is closely linked to DR3 and DR4 
alleles [40]. T1D has a positive association with both 
DR3 and DR4, where relative risk (RR) is 3 and 6, re-
spectively; risk is the highest (RR=30) in individuals of 
the heterozygous HLA-DR3/DR4 genotype. Suscepti-
ble HLA-DQβ alleles comprise non-charged amino ac-
ids (valine, serine, or alanine) at position 57 (HLA-
DQ8β) instead of the common aspartic acid residue at 
this site (HLA-DQ7β). The autoimmune feature of this 
single amino acid change may be explained by the loss 
of a salt bridge between α and β chains making the 
MHC class II molecule less stable and affecting its 
peptide-binding affinity [45, 46]. On the other hand, 
resistance to disease is associated with HLA DR2 and 
DQB1*0602; people with these alleles rarely develop 
diabetes even if they express DR3 and/or DR4 [47]. 

INS-associated variable number of tandem repeats (VNTR) 

As HLA-mediated susceptibility does not explain 
all genetic susceptibility to T1D, it is evident that non-
HLA loci must also be involved. There is a consistent 
association with T1D of the region near the insulin 
gene (INS) on chromosome 11p15, termed IDDM2 
[34, 48]. A major contributor to risk in this region 
seems to be a variable number of tandem repeats 
(VNTR) that is located within the regulatory sequences 
of the INS gene [49]. This polymorphism consists of a 
14-15bp G-rich consensus sequence (ACAGGGGTC 
TGGGG) that clusters to 30-60 and 120-170 repeats 
in the class I and class III alleles, respectively. Inter-
mediary class II alleles are uncommon in Caucasian 
populations [50]. A homozygous combination of class 
I alleles is found in about 85% of T1D patients in 
comparison to about 60% in the general population, 
suggesting it is an allele conferring susceptibility to 
T1D. Conversely, homozygosity for class III alleles is 
rarely found among diabetics [51, 50]. It is believed 
that T1D susceptibility and/or resistance associated 
with IDDM2 may derive from the impact of VNTR 
alleles on insulin transcription in the thymus. An asso-
ciation between class III alleles and a higher steady-
state level of (pro)insulin mRNA expression in the 

thymus has been identified and correlated with in-
creased preproinsulin expression, which could mediate 
improved induction of central tolerance [52-54]. 

IGF2 
Other loci in the 11p15 region may also contribute 

to IDDM2-encoded T1D susceptibility. Situated 
downstream from the INS VNTR, within the IDDM2 
region,  is  the IGF2 (insulin-like growth factor 2) 
gene, which inhibits apoptosis and stimulates pancre-
atic β-cell proliferation [55]. IGF2 may also act as a 
positive selecting peptide for insulin reactive T cells 
because of its sequence homology to preproinsulin [56, 
57]. Paquette et al. [58] found an association between 
class I alleles of the INS promoter VNTR and in-
creased expression of IGF2 in placenta, and it has been 
suggested that IGF2 expression may have some effect 
on intrauterine growth and birth size, both of which 
are known T1D risk factors [59]. However, this finding 
has not been confirmed in other studies [60, 61]. 

CTLA4 
The CTLA4/CD28 region at 2q31-q33 contains 

genes encoding crucial T cell regulatory molecules, in-
cluding CTLA4 (encoding the cytotoxic T lympho-
cyte associated protein 4, CD152) and CD28. These 
proteins have the opposite roles of regulator, and en-
hancer, of T cell effector function, respectively. The 
human CTLA4 gene may contain several polymor-
phisms, making it a candidate susceptibility gene for 
AIDs. At present, the most informative polymorphism 
is a single peptide dimorphism at position 49 (A49G) 
in exon 1 [62]. This substitution leads to the exchange 
of a threonine to alanine residue [63]. Most case-
control studies confirm the link between the G allele 
of this SNP and several AIDs, including T1D in vari-
ous populations [36-39, 64]. Interestingly, increased 
proliferation of T cells was found in G/G homozy-
gotes [65, 66] but further functional studies are needed. 

IDDM10 
A region on human chromosome 10 (10p11-q11; 

IDDM10) has been linked to T1D by the Type 1 Dia-
betes Genetics Consortium [31], supporting the prior 
association reported by Reed et al. [67] in an independ-
ent UK case control study. No candidate genes have 
been proposed. 

SUMO4 
A non-synonymous coding SNP in the SUMO4 

gene within IDDM5 on chromosome 6q25 encodes a 
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methionine to valine substitution at codon 55, which is 
also associated with T1D [68-70]. The intronless gene 
SUMO4 belongs to the family of small ubiquitin-like 
modifiers (SUMO family) encoding post-translational 
modifying proteins [71]. SUMO4 is believed to be in-
volved in immune responses by modulating nuclear 
translation of nuclear factor-κB (NF-κB), affecting the 
transcription of genes encoding pro-inflammatory cy-
tokines [68, 71]. 

LYP/PTPN22 

Recently it was discovered that after IDDM1 and 
IDDM2, the next gene which contributes the strongest 
effect of T1D risk is LYP/PTPN22 mapping to chro-
mosome 1p13.2 [72-74]. PTPN22 codes for a key en-
zyme, protein tyrosine phosphatase N22, which associ-
ates with the molecular adaptor protein CBL and may 
be involved in regulating function in the T cell recep-
tor (TCR) signaling pathway [75]. A functional single 
nucleotide polymorphism (SNP; C1858T) within 
PTPN22 results in the exchange of arginine for a tryp-
tophan residue at position 620 (R620W) in the proxi-
mal proline-rich SH3 domain of PTPN22. Bottini et al. 
[76] and Begovich et al. [77] showed that this substitu-
tion disrupts the interaction between PTPN22 and an 
intracellular C-terminal Src protein tyrosine kinase 
(CSK), a molecule that down-modulates TCR signaling 
[78]. The T allele (encoding a tryptophan residue) has 
positive association with T1D at a relative risk of ap-
proximately 3 [79, 80]. 

Other loci 
The most recent data published by the Type 1 Dia-

betes Genetics Consortium did not find evidence for 
many of the previously published linkage regions (e.g. 
IDDM3-9, IDDM11, IDDM13-18, PTPN22) but found 
evidence suggestive of linkage at several other loci [31]. 
Given that some of the loci not identified have re-
ceived significant prior support (such as IDDM5 and 
PTPN22), local variations in allele frequencies or envi-
ronmental conditions may play a significant role. 

Parent-of-origin effects 
In addition to the sheer number of IDDM loci 

identified, the genetics of T1D is further complicated 
by the action of parental imprinting on their expres-
sion. Parent-of-origin effects have been most inten-
sively studied for the HLA (IDDM1) and the INS 
VNTR (IDDM2), both with conflicting results. Exces-
sive transmission of paternal HLA alleles compared 

with maternal alleles have been observed by some 
groups [81-83], while others have either noted exces-
sive transmission of the maternal alleles or identified 
no difference with respect to the parental origin of the 
alleles [84-86]. Similarly, paternal imprinting of INS 
VNTR-IGF2 within IDDM2 has been observed [87, 
88], but this has also been disputed [89]. More recently, 
Bennett et al. proposed that the paternal effect was in-
deed present, but only when the father’s untransmitted 
allele was of class III [90]. 

Other IDDM loci have been considered for effects 
of imprinting, including IDDM5, IDDM8, IDDM10 
and IDDM15. However, while Delepine and co-
workers found no significant differences in the paren-
tal origin of alleles at IDDM5, IDDM8 or IDDM15 
[91], Paterson et al. showed the paternal origin of 
IDDM8 to be significant for disease incidence, while 
there was a maternal effect at IDDM10 [92]. 

Environment and T1D 
The incidence of diabetes differs between different 

ethnic groups. Although this can partly be explained by 
differences in genetic predisposition between various 
populations, changes in diabetes incidence of migrating 
populations, as well as the rapidity of the increase in 
incidence of diabetes world wide [93] indicate that en-
vironmental factors play an important role. 

Ante- and perinatal environment 
Advanced maternal age (> 35 years), excessive 

weight gain in pregnancy and amniocentesis have all 
been reported as risk factors in the pathogenesis of 
diabetes [94]. The possibility of the intrauterine envi-
ronment having an effect on subsequent T1D devel-
opment requires further investigation. 

An association between increased weight (BMI) 
gain in the first 12 months after birth and T1D was 
first noticed by Baum et al. [95] and has been con-
firmed by others [96, 97]. This may be caused by ex-
cess fat cell accumulation affecting insulin resistance. 
An increased growth in length in the following two 
years was also observed, possibly leading to increased 
demands for insulin secretion. This pattern of in-
creased growth was associated with the presence of 
autoantibodies to tyrosine phosphatase-like protein 
(IA-2), at clinical diagnosis many years later [97], sug-
gesting that the increased growth in infancy could re-
sult in faster subsequent pancreatic islet destruction 
once IA-2 autoantibodies are present. 

Kagohashi et al. transplanted preimplantation-stage 
mouse embryos from the diabetes-prone NOD strain 
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into the uteruses of diabetes-resistant ICR and 
DBA/2J mice, to assess the role of maternal factors in 
the development of insulitis and overt diabetes [98]. 
The NOD→ICR and NOD→DBA offspring were 
observed to develop insulitis considerably earlier than 
NOD→NOD offspring but overt diabetes was signifi-
cantly suppressed in these offspring in comparison to 
NOD→NOD offspring. Insulin autoantibodies 
(IAAs) were undetectable in ICR and DBA/2J surro-
gate mothers and in NOD→ICR and NOD→DBA 
offspring at the onset of insulitis, suggesting that ma-
ternal factors other than transmitted IAAs induced the 
earlier onset. The authors concluded that this was an 
indication that altered maternal factors other than 
transmitted IAAs, such as hormone levels or viral in-
fections and/or other infectious agents, could be 
transmitted vertically from the mother to the offspring 
during the perinatal period, modifying the immune re-
sponse to islets, which in turn might affect the patho-
genic course from insulitis to overt diabetes. 

Dietary factors 

Gluten 
The association between T1D and coeliac disease 

(CD), a condition affecting approximately 1 in 200 
people [99] characterized by immune mediated damage 
to the jejunal mucosa, was first observed nearly 40 
years ago [100, 101]. CD is an inflammatory disease 
triggered by gluten, a protein complex in wheat, rye 
and barley, and results in villous atrophy and crypt hy-
perplasia of the small bowel. As the symptoms of CD 
are often mild, atypical or absent, it often remains un-
diagnosed. Up until recently it was believed that the 
prevalence of CD in diabetics was similar to that of the 
general population [102], but with the advent of more 
sensitive screening methods, such as quantitation of 
anti-tissue transglutaminase (TTG) autoantibodies 
[103], it has become clear that the prevalence of CD in 
patients with T1D can be as high as 10%  [104]. Fur-
thermore, Bao et al. found that 33% of T1D patients 
homozygous for DR3-DQ2 produce TTG autoanti-
bodies [105]. Unstable diabetes and growth failure in 
children may be an indication of CD [106, reviewed in 
107]. As complications of CD include development of 
lymphoma [108, 109] and osteoporosis [110], and the 
risk of these diseases can be reversed by eliminating 
gluten from the diet, screening and diagnosis of chil-
dren with a  high risk to diabetes is important. 

Animal studies in BB rats in which gluten or the 
wheat protein gliadin were added to the diet, have 

shown an increased risk of diabetes [111, 112]. Most 
studies in NOD mice support a causative role for glu-
ten, with increased incidence of disease associated with 
increased consumption, and protection associated with 
exclusion of gluten from the diet [113-116]. Hummel et 
al. fed a gluten exclusion diet to patients who were 
positive for at least two T1D-associated autoantibod-
ies, but did not find any consistent alteration in the 
subsequent titers of these antibodies over a 12 month 
period [117]. They therefore concluded that gluten 
does not directly drive islet autoantibody production in 
T1D as it does for TTG autoantibodies in CD. Pastore 
et al. found that although autoantibody titers were not 
influenced by a gluten free diet, insulin secretion in 
subjects at high risk for T1D was improved [118], thus 
indicating that eliminating gluten from the diet may 
nevertheless have a beneficial effect on the preserva-
tion of β-cell mass or function. 

Cow’s milk (CM) proteins 

An inverse correlation between breast-feeding fre-
quency and T1D was observed in the early 1980s. 
Borch-Johnsen et al. reported that diabetic children 
were often either breast-fed for shorter periods of 
time, or not at all, in comparison to their non-diabetic 
siblings or the general population [119]. Several 
groups, working in both human and animal models, set 
about trying to confirm this finding with inconsistent 
results. Fort et al. could find no relationship between 
breast-feeding history and T1D [120] while others 
found that children with diabetes had been breast-fed 
over less time, on average, than non-diabetic children 
[121-123]. Similarly, a two-fold increase in diabetes in-
cidence has been observed when the duration of 
breast-feeding was less than 3-4 months [reviewed in 
124, 125, 107], or when the infant was exposed to CM 
formula before 2-3 months of age [126, 127]. More re-
cently, the DIPP study (a Finnish birth-cohort study) 
observed an association between seropositivity for 
anti-IA-2 autoantibodies, or for all four diabetes-asso-
ciated autoantibodies (anti-islet, anti-GAD65, anti-IA-
2 and anti-insulin), with a breast-feeding time of less 
than 2 months [128], and an increased risk to T1D was 
also found to be associated with CM intake in children 
past the infancy stage [129, 130]. 

Patients with newly diagnosed T1D have been 
documented to have enhanced humoral and cellular 
immune responses to several CM proteins, including 
whey proteins, bovine serum albumin (BSA) [131, 132] 
and β-lactoglobulin (BLG) [133, 134]. Autoimmunity 
to ICA69 also occurs in some patients with other auto-
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immune diseases such as rheumatoid arthritis, which 
shares some genetic background with T1D (i.e. HLA 
DR0401 allele) [135]. While levels of antibodies to BSA 
and BLG decline with age in control subjects, patients 
with T1D showed no such reduction, indicating a fail-
ure of oral tolerance. Cytokines secreted by lympho-
cytes stimulated by BLG did not differ between T1D-
patients and controls [136]. 

The immunogenic effect of dietary proteins such as 
CM has also been clearly demonstrated in studies in 
NOD mice [137] and BB rats [111, reviewed in 138]. 
Beppu et al. in 1987 reported elevated levels of anti-
bodies to BSA (bovine serum albumin) in NOD mice 
compared to non-diabetic controls, indicating an exag-
gerated immune response to BSA [139]. It is possible 
that BSA mediates its effect on T1D through its struc-
tural similarity to an islet cell antigen termed ICA69 or 
p69 [132]. 

Vitamin D 
The risk of onset of T1D correlates to seasonal 

variation, with the largest proportion of cases being 
diagnosed during winter and autumn and the smallest 
in summer, especially in countries with extreme sea-
sonal variations [140]. The levels of serum 25-hy-
droxyvitamin D3 (25OHD3) shows reciprocal seasonal 
and geographic variations [141-145]. Vitamin D is not 
only essential for bone and mineral metabolism but 
also affects glucose metabolism and immune function. 
β-cell insulin synthesis and secretion are impaired in 
vitamin D-deficient animals [146] and glucose toler-
ance is restored when vitamin D levels are returned to 
normal. Human peripheral blood monocytes and acti-
vated T cells have high affinity receptors for vitamin D 
[147, 148] and NOD mice supplemented with the ac-
tive form of vitamin D or its analogues do not develop 
insulitis [146] or diabetes [149]. Human studies have 
shown that the incidence of T1D is reduced signifi-
cantly with vitamin D supplementation of either in-
fants at risk [150], or their mothers during pregnancy 
[151]. 

Toxins 
The β-cells of pancreatic islets are highly sensitive 

to metabolic stress, free radicals and cytokine exposure 
[152]. This issue was brought to the fore when a series 
of cases of attempted suicide with the rodenticide 
Vacor (containing N-3-pyridylmethyl-N’-p-nitrophenyl 
urea; RH-787) resulted in direct β-cell toxicity and on-
set of insulin-dependent diabetes [153]. Streptozotocin, 
derived from Steptomyces spp, also induces T1D through 

a direct toxic action on β-cells in certain inbred mouse 
strains [154]. A modification of the administration pro-
tocol was developed as a model of autoimmune diabe-
tes, in which repeated, small doses of streptozotocin 
were administered, with a view to priming immune re-
sponses against chemically modified β-cell constituents 
released following tissue damage [155]. This model fell 
out of favor when Leiter et al. found that the resulting 
disease did not appear to be T cell-dependent, and it 
faced significant competition from the spontaneous 
autoimmune mouse model, the NOD mouse [156]. 
Ironically, results of recent experiments using anti-
CD3 monoclonal antibodies in low-dose streptozoto-
cin-treated mice suggest that islet destruction in this 
model is, at least in part, autoimmune [157]. 

Myers et al. found that nanogram quantities of the 
macrolide antibiotic bafilomycin A1 caused glucose 
intolerance and pancreatic islet disruption in mice 
[158]. This macrolide and others structurally similar are 
produced by the Streptomyces species ubiquitous in soil, 
which can infest tuberous vegetables, particularly pota-
toes and beet [124]. Myers et al. have proposed that 
dietary exposure to bacterial macrolides could there-
fore damage pancreatic islets, resulting in antigen 
shedding, priming autoimmune responses in sus-
ceptible individuals [158]. Consistent with this possibil-
ity is the high T1D incidence in Western countries 
where consumption of tuberous vegetables and sugar 
refined from beets is common. 

Microorganisms and T1D 
In both humans and animal models, strong associa-

tions have been identified between infectious agents 
and T1D [159-160]. Viruses are regarded as a prime 
initiating factor because they may show tissue tropism 
for islets, can cause tissue damage and antigen shed-
ding, and can prime strong immune responses leading 
to local inflammation. 

Congenital rubella infection 
Prenatal rubella infection in the first trimester is the 

best-established example of viral initiation of T1D 
[161]. Twenty percent of patients with congenital ru-
bella develop the disease [161, 162] and animal studies 
in rabbits [161] and hamsters [163] confirm the asso-
ciation. Although the onset of infection clearly pre-
cedes the development of T cells in humans, it remains 
possible that the role of the virus is one of immuno-
modification, rather than initiation, as the virus main-
tains a productive infection of the pancreas throughout 
life [164]. Despite the major impact on the prevalence 
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of congenital rubella by vaccination programs in West-
ern countries, T1D incidence continues to increase 
[165], suggesting that this is not a common cause of 
T1D in these communities. 

Enteroviruses 
Enteroviruses are small (27 nm in diameter) viruses 

that are made of ribonucleic acid (RNA) and protein 
and include the polioviruses, coxsackieviruses, and 
echoviruses. There are 3 different polioviruses and 
more than 60 non-polio enteroviruses that can cause 
disease in humans, including 23 Coxsackie A viruses, 6 
Coxsackie B viruses, 28 echoviruses, and 4 other en-
teroviruses. An association between enteroviruses and 
T1D was observed in both human [166, 167] and ani-
mal studies [168]. Prospective studies of enteroviruses 
in Finland, where diabetes incidence is high but en-
terovirus infections are uncommon, revealed that the 
viruses were more often detected in those children 
who later developed diabetes than in their siblings who 
did not [169-173] and Luppi et al. reported that host 
susceptibility to enteroviral infection may be influ-
enced by HLA background [173] - potentially com-
pounding any attempt at association studies. Despite 
this, a causal association is supported by the serocon-
version to anti-islet antibodies after enterovirus infec-
tion found in children with the high risk HLA-DQB1 
genotype [170]. 

Coxsackie virus B4 
Gamble and colleagues [166, 167] described a sea-

sonal variation in T1D incidence following enterovirus 
infection, as well as increased antibodies against Cox-
sackie virus B4 serotypes, in newly diagnosed patients 
when compared to control subjects. These findings 
were confirmed by subsequent studies [174-178]. Se-
quence similarity between the enterovirus 2C protein 
of Coxsackie virus B4 and the 65 kDa form of gluta-
mate decarboxylase, (GAD65), a GABA-producing 
neuroendocrine enzyme present in β-cells [179], raises 
the possibility that an anti-viral T cell response may 
cross react with the native protein, inducing an auto-
immune response [180, 181]. To date, attempts to 
demonstrate direct cross-reactivity at the T cell clonal 
level have failed despite the relevant peptides being 
highly immunogenic [182, 183]. 

Although great interest was generated by the report 
of Yoon et al. that Coxsackie virus B4, isolated from 
the pancreas of a child who died from diabetic keto-
acidosis, transferred diabetes to diabetes-resistant SJL 
mice, this feat has never been replicated [168]. Horwitz 

et al. revisited the issue by infecting recombinant 
mouse strains with Coxsackie virus B4 virus [184]. Al-
though mice bearing the diabetes-associated MHC 
haplotype of NOD mice on a C57 strain background 
did not develop diabetes, and infected wild type NOD 
mice did not show evidence of exacerbated disease, 
infected NOD mice bearing a transgenic T cell recep-
tor (BDC2.5), which was specific for an islet antigen, 
did. Serreze et al. subsequently found that infection 
with Coxsackie virus B4 can accelerate diabetes in 
NOD mice providing a certain level of autoreactive T 
cells have accumulated prior to infection [185]. 

Other viruses 
Infection with other viruses, such as mumps, hu-

man cytomegalovirus (CMV) and rotaviruses have also 
been suggested to be diabetogenic in susceptible indi-
viduals [169, 186, 171, 187-189]. Although the mumps 
epidemics have been associated with an increase in 
T1D incidence [190], the introduction of a vaccination 
for mumps has not proven an effective primary pre-
ventative. The association between CMV and T1D was 
implied by a case report of an infant with CMV who 
presented with T1D at 13 months of age [191]. Others 
tried to verify this association in T1D patients, but 
could not substantiate it [192]. 

Rotaviruses are double-stranded RNA viruses of 
the reovirus family and are a predominant cause of 
gastroenteritis in infants. They were suspected to have 
an association with T1D due to a strong sequence 
similarity between rotavirus VP7 and both GAD65 
and IA-2 [193, 194]. In the longitudinal Australian 
BabyDiab study of at-risk children, Honeyman et al. 
revealed that islet antibodies appeared in 24 of 300 
children within the same 6 month period in which they 
had significant rises in rotavirus-specific IgA and IgG 
[194]. This association of rotavirus infections with de-
velopment of diabetes was not confirmed in a Finnish 
study [195]. 

Gene/environment interactions 
To date, most postulated mechanisms for environ-

mental effects on the risk of T1D involve the initiation 
of disease; either due to cross reactivity of immune re-
sponses to food or microorganisms to β-cell constitu-
ents, or through tissue tropism and cytotoxicity of in-
fectious agents, resulting in antigen shedding and prim-
ing of an autoimmune response. The data from the 
spontaneous animal models of T1D are partially con-
sistent with such a mechanism. If protein antigens are 
excluded and the diet supplemented by protein hydro-



 
Genes in Type 1 Diabetes  The Review of Diabetic Studies 199  

  Vol. 2 ⋅ No. 4 ⋅ 2005 
 

www.The-RDS.org  Rev Diabetic Stud (2005) 2:192-207  

lysate as a source of amino actids, diabetes is prevented 
[137, 196]. 

As a generalization, these mechanisms do not ap-
pear to play a major role in the modulation of disease 
risk by infectious agents in these models, as the greater 
the microorganism burden of the mice, the lower the 
incidence of diabetes [197]. The exact nature of such 
interactions may be difficult to dissect as they could be 
due to multifaceted interactions [198]; several infec-
tions might have to act in concert to precipitate clinical 
autoimmunity and in some infections viruses may play 
a role in prevention rather than precipitation of disease 
[199]. Progress is unlikely to be achieved until the in-
teractions between environmental component and ge-
nome are understood at the molecular level. For ex-
ample, we have identified a molecular constituent of 
Mycobacterium bovis cell wall (mycolylarabino-galactan-
peptidoglycan; MAPG) capable of preventing diabetes 
in NOD mice, providing it is administered after the 
onset of insulitis, but before end-stage tissue destruc-
tion (PCT/AU97/00770). This appears to be the mo-
lecular basis of the diabetes protection attributed to 
complete Freund’s adjuvant (CFA) [200] and whole 
Mycobacterium bovis [201] in this model. In contrast, ex-
posure of intact skin to bacterial robosylating exotoxin 
can exacerbate disease in NOD mice [202]. Again, the 
effect appears to be a modulation of on-going inflam-
mation, rather than due to conventional antigen prim-
ing. 

Toll-like receptors 
One potential mechanism of such interactions is via 

toll-like receptor (TLR) signaling [203, 198]. Toll-like 
receptors are a family of homologous proteins in-
volved in the afferent limb of vertebrate innate im-
mune responses to components of bacteria, viruses 
and parasites. Signaling via TLR has major effects on 
the activities of antigen presenting cells (APCs), includ-
ing the production of inflammatory cytokines and the 
upregulation of MHC products and costimulator mole-
cules. Although TLR4, the first identified member of 
the family, appears to act at the cell surface as the sig-
nal transduction component of a multimeric lipopoly-
saccharide (LPS) receptor [204], it is likely that some 
members operate within the cell. For example, TLR3 is 
necessary for responses to viral dsRNA; TLR9 is nec-
essary for the immunopotentiating effects of unmethy-
lated CpG DNA [205], which is presumably only ex-
posed after bacterial lysis in phagolysosomes; and 
TLR2 is recruited to macrophage phagosomes follow-
ing stimulation with a yeast cell wall preparation [206]. 

TLR2 is involved in responses to a broad range of 
constituents of pathogen cell walls, especially hydro-
phobic or lipid containing components. In many cases, 
it appears to act as a heterodimer with TLR1 or TLR6 
or, based on strong sequence homologies, TLR-10. In 
contrast, TLR3, 7, 8 and 9 share relatively little se-
quence homology with the TLR2-associated mem-
bers, respond to nucleic acids [207, 208] and all but 
TLR8 are known to mediate IFN-α and IFN-β pro-
duction. TLR4 lies somewhere between these two 
groups: it has intermediate sequence homologies, re-
sponds to the LPS of gram negative bacteria, but me-
diates IFN-β secretion [209]. 

Like IL-1, ligated TLR interact with MyD88 
through association of shared TIR domains. The death 
domain of MyD88 interacts with that of IRAK, a ser-
ine/threonine protein kinase, resulting in the activation 
and phosphorylation of IRAK, allowing it, in turn, to 
interact with TRAF6, an E3 ligase. TRAF6 then un-
dergoes stimulus-dependent autoubiquitination, acti-
vating the kinase TAK1, which phosphorylates and ac-
tivates the complex of IKK α and β kinases, leading to 
IκB degredation [reviewed in 210]. The IκB protein 
family holds NFκB/Rel transcription factor dimers la-
tently in the cytoplasm and their degradation results in 
NFκB/Rel translocation to the nucleus  [reviewed in 
211], resulting in the secretion of IL-1β and upregula-
tion of the expression of CD80 and CD86. Although 
the pathway described is common to all TLR, the tar-
get specific differences in outcome of stimulation indi-
cates additional regulatory mechanisms and signaling 
pathways. For example, TLR4 signaling also involves a 
novel TIR domain containing adapter protein, called 
TIRAP [212] and Nod2 modulates TLR-dependent 
responses to LPS and muramyl dipeptide [213]. 

The direct evidence for a role of TLR in mediating 
environmental effects on progression to T1D is cur-
rently scant. In mice bearing a transgene that induced 
expression of the costimulator molecule B7.1 (CD80) 
on their pancreatic β-cells, multiple injections of the 
TLR3 ligand polyinosinic-polycytidylic (poly(I:C)) pre-
cipitated diabetes [214]. Similarly, in a rat model of dia-
betes, in which disease is induced in BB-diabetes resis-
tant rats by infection with Kilham rat virus, prior 
treatment with poly(I:C) increased the incidence of 
diabetes from 23% to 100% [215]. A suggestion of an 
association between T1D and TLR3 polymorphisms in 
South African blacks has also been reported [216], but 
as the gene encoding TLR3 does not map to a major 
linkage region for T1D in other populations, confirma-
tion is needed. 
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The protective effect of both CFA and Mycobacte-
rium bovis in NOD mice is mediated by IFN-γ [217], 
which is likely to be a downstream consequence of IL-
12 production by APC [218]. This, in turn, is known to 
be produced following TLR ligation by components of 
mycobacterial cell wall [219]. Consistent with this hy-
pothesis is the claim that CFA mediated protection is 
dependent on an adjuvant action [200] and the de-
pendence on MyD88 of the adjuvant action of CFA 
[220]. It is therefore interesting that the gene encoding 
TLR2, which plays a critical role in innate immune re-
sponses to mycobacterial wall (including to MAPG 
specifically) [221], maps to the same chromosome 3 
region as the NOD mouse diabetes susceptibility gene 
Idd17 [222]. Similarly, the gene encoding mouse 
TLR12, identified only through sequence homology at 
this stage, maps to the same genomic region of chro-
mosome 4 as the NOD mouse diabetes susceptibility 

gene Idd25 [223]. 
Of greater clinical significance, is the colocalization 

of human genes. The gene encoding TLR4 maps to 
chromosome 9q33 [224], the same region Concannon 
et al. [31] mapped an unnamed T1D locus of suggestive 
genome wide significance. There is no clear published 
evidence of altered TLR4 function in diabetic patients. 
The gene encoding TLR5 in humans is located on 
chromosome 1q42, a T1D linkage region identified by 
Cox et al. [30] and subsequently confirmed by others 
[225, 226]. The systemic autoimmune disease systemic 
lupus erythematosus also maps to this locus in both 
humans [227, 228] and mice [229-232], including lupus 
induced in NOD mice by mycobacteria [233]. In this 
case, a polymorphism introducing a premature stop 
codon into the sequence of TLR5 in man has been as-
sociated with disease [234]. Clearly, in the case of dia-
betes, there is work to be done! 
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