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 ■ Abstract 
Diabetes, particularly type 1 diabetes, results from the lack 
of pancreatic β-cells. β-cell replenishment can functionally 
reverse diabetes, but two critical challenges face the field: 1. 
protection of the new β-cells from autoimmunity and allore-
jection, and 2. development of β-cells that are readily avail-
able and reliably functional. This chapter will examine the 
potential of endogenous replenishment of pancreatic β-cells 
as a possible therapeutic tool if autoimmunity could be 
blunted. Two pathways for endogenous replenishment exist 
in the pancreas: replication and neogenesis, defined as the 
formation of new islet cells from pancreatic progenitor/stem 
cells. These pathways of β-cell expansion are not mutually 
exclusive and both occur in embryonic development, in 
postnatal growth, and in response to some injuries. Since the 
β-cell population is dramatically reduced in the pancreas of 

type 1 diabetes patients, with only a small fraction of the β-
cells surviving years after onset, replication of preexisting β-
cells would not be a reasonable start for replenishment. 
However, induction of neogenesis could provide a starting 
population that could be further expanded by replication. It 
is widely accepted that neogenesis occurs in the initial em-
bryonic formation of the endocrine pancreas, but its occur-
rence anytime after birth has become controversial because 
of discordant data from lineage tracing experiments. How-
ever, the concept was built upon many observations from 
different models and species over many years. Herein, we 
discuss the role of neogenesis in normal growth and regen-
eration, as learned from rodent models, followed by an 
analysis of what has been found in humans. 
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1. Introduction 
 

 ype 1 diabetes results from a marked defi- 
 ciency of pancreatic β-cells, while type 2 dia- 
 betes has only a relative deficiency. The Ed-

monton protocol for islet transplantation has pro-
vided the “proof-of-concept” that β-cell replenish-
ment can reverse type1 diabetes. However, the 
field still has two critical challenges: 1. the protec-
tion of β-cells from autoimmunity and allorejection, 
and 2. the provision of β-cells that are readily 
available and reliably functional. The area of β-cell 
replenishment or replacement is a major area of 
research. While another chapter in this Special Is-

sue deals with islet transplantation as an exoge-
nous supply of β-cell replacement [1], this chapter 
will examine the endogenous replenishment of 
pancreatic β-cells. 

Normal growth of the endocrine pancreas re-
lies on differentiation of islet cells from stem 
cells/progenitors (a process termed neogenesis) and 
on replication of preexisting islet cells. Replication 
and neogenesis are not mutually exclusive; both 
pathways of β-cell expansion occur in embryonic 
development, in postnatal growth, and in response 
to some injuries. In 1938, the pathologist Shields 
Warren wrote: “The pancreas in diabetes is not 
simply the scarred field of an old battleground, but 
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is the actual field of conflict. It does not submit 
without a struggle to injury, but endeavors to re-
generate” [2]. Yet, by several years after onset, the 
pancreas in type 1 diabetes usually has very few 
surviving β-cells, so just enhancing sufficient repli-
cation of these remaining β-cells to reach a critical 
mass is a difficult and perhaps unreachable goal, 
even if the autoimmune destruction could be con-
trolled. However, enhancing neogenesis may have 
more potential to provide an increase of new β-cells 
that could then replicate further to provide enough 
β-cells to reverse diabetes. 

2. Definition of neogenesis 
Neogenesis or the formation of new islet cells 

from pancreatic progenitor/stem cells is widely ac-
cepted as being responsible for the initial embry-
onic formation of the endocrine pancreas. How-
ever, its occurrence after birth has become contro-
versial because of discordant observations in line-
age tracing experiments. The concept was built 
upon numerous observations from different models 
and species over many years, and there are com-
pelling data that progenitors have a role in re-
newal and growth of islets after birth. 

One of the difficulties in measuring the extend 
of neogenesis has been the lack of clear identifying 
markers of such newly formed cells. The most 
common criteria for identification have been islet 
hormone-positive cells that seem to be budding 
from the pancreatic duct epithelium, or tiny clus-
ters (1-3 cells) of scattered insulin-positive cells 

(Figure 1). It has been argued that these cells are 
static without actual “budding”, and that they are 
relics from embryonic development. Nonetheless, 
many rodent studies, including some lineage trac-
ing experiments, provide data on neogenesis that 
accompanies normal growth. Additional data come 
from surgical and experimental manipulations. 
These data support the concept of neogenesis being 
a dynamic process. Other rodent studies have 
shown an increase in the proportion of small islets 
or even a reduced mean islet size at the time of is-
let expansion that supports the formation of new 
islets after birth and injury. Some of these animal 
data will be presented in this perspective over-
view, followed by an analysis of the data from hu-
man studies. 

3. Neogenesis during the neonatal pe-
riod in rodents 

During the neonatal period, β-cell replication 
continues, and significant neogenesis occurs. There 
have been numerous approaches that have sup-
ported the significance of the neogeneic formation 
during the neonatal period in both rats and mice. 
In a mathematical model based on existing data on 
determinants of β-cell mass (mass, individual cell 
volume, replication, and apoptosis) in Sprague-
Dawley rats [3], we predicted two waves of neo-
genesis: one immediately after birth and the other 
2-3 weeks after birth. We subsequently docu-
mented the increased appearance of islets budding 
from the ducts at the same times, shortly after 
birth and just before weaning [4], supporting the 
predicted waves of neogenesis. Using data from 
the latter study, we estimated that about 70% of 
the β-cells seen at day 31 could be accounted for by 
replication of pre-existing β-cells, while the re-
maining 30% came from neogenesis [5]. This calcu-
lated estimate is consistent with the findings from 
our duct-specific lineage tracing experiments in 
mice ([6]; Guo et al., unpublished). Similarly, Bou-
wens et al. showed that the β-cell mass in rats 
more than doubled between 2 and 5 days after 
birth but the bromodeoxyuridine (BrdU) incorpo-
ration in β-cells at day 2 could account for only 
12% of the observed growth by day 5. No change in 
the cross-sectional area of the β-cells accompanied 
the increase in mass, indicating that new cells 
rather than larger cells accounted for the in-
creased mass. The authors concluded that most of 
the growth was by neogenesis occurring at the pe-
riphery of the islets from cells strongly expressing 
cytokeratin (CK) 19 and 20 [7]. 

Abbreviations: 
 

BrdU – bromodeoxyuridine  
CAII – carbonic anhydrase II 
CCKB – cholecystokininB 
CK – cytokeratin  
CT – computed tomography 
ERT2 – estrogen receptor T2 
FoxM1 – forkhead box protein M1 
GFP – green fluorescent protein 
GLP-1 – glucagons-like peptide 1 
HNF1β – hepatocyte nuclear factor 1 beta 
Ins – insulin  
MAFA – v-maf musculoaponeurotic fibrosarcoma oncogene 
homolog A (avian) 
MIP – mouse insulin I gene promoter 
PAX4 – paired box gene 4 
PDL - partial duct ligation 
PDX1 – pancreatic and duodenal homeobox 1 
Px – partial pancreatectomy 
SOX9 – SRY-box 9 
SRY – sex-determining region Y 
T2D – type 2 diabetes 
TGFα – transforming growth factor alpha 
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Using measurements of islet size, number and 
β-cell proliferation, several groups have provided 
documentation of a substantially increased num-
ber of islets or insulin-positive cell clusters occur-
ring from birth to adulthood. After extensive 
counting of total β-cells at day 2-3 and 10 weeks, 
Chintinne et al. concluded that about 30,000 β-cell 
clusters of less than 50 mm diameter formed dur-
ing this time in male Wistar rats [8]; this repre-
sented a 14-fold increase in the number of small 
aggregates of insulin-positive cells. Similarly, Peng 
et al. showed that the islet number in mice in-
creased from about 50/pancreas at 1 week to about 
900 at 2 months after which it was stable, suggest-
ing that impressive neogenesis occurred after 
birth, but became undetectable by 2 months [9]. 
An obvious caveat for the enumeration of islets 
over time is that small clusters of islet cells, which 
initially had been below the detection limit, may 
increase in size due to proliferation and be counted 
as newly formed. However, the former counted in-
dividual cells, and the latter used a cutoff of 20 
µm, which is essentially the diameter of 2 cells. An 
alternative interpretation to new formation of is-
lets during this neonatal time is that of fission of 
large islets [10]. Using mice that express green 
fluorescent protein (GFP) under the control of the 
mouse insulin I gene promoter (MIP), MIP-GFP 
CD1 mice, and a criteria of greater than 4 insulin-
positive cells per islet, Jo et al. presented a model 
based on islet diameter of fission of larger elon-
gated islets during the first 3 weeks after birth 
[11]. Over the first 3 postnatal weeks they esti-
mated, 800 new islets were formed, 300 of which 
formed by fission and 500 by neogenesis. 

A third approach has been lineage tracing us-
ing the Cre-lox system. Several different promot-
ers used as duct-specific drivers of Cre expression 
in crossbreeds with reporter mice gave differing 
results, with the following having similar conclu-
sions: 

 
1. Using Hnf1β promoter, Solar et al. found 

no marked β-cells or acinar cells after birth 
[12] 

2. Using mucin1, Kopinke et al. also found no 
neonatal neogenesis, but only had a 10% 
labeling efficiency in ducts [13] 

3. Kopp et al. [14] and Furuyama et al. [15], 
both using Sox9 promoter, found a low rate 
of neogenesis only immediately after birth, 
with the former finding absolutely no aci-
nar-labeling, while the latter found acinar-
labeling such that by 1 year most acinar 
cells were marked. 

 
In contrast, using carbonic anhydrase II 

(CAII), which only starts to be expressed in pan-
creatic ducts at the very end of gestation [16], we 
showed that in the 4 weeks after birth both islets 
and acini were formed from cells that once ex-
pressed CAII; 38% of the islets were marked (17% 
of all insulin-positive cells), and a number of aci-
nar cells with some lobes were marked, but not 
others [6]. In an effort to reconcile these discrepant 
results, we hypothesized that the duct cells are 
heterogeneous in their transcription factor expres-
sion and their potential to act as progenitors for 
islets and acini. We titrated the HNF1β and SOX9 
antibodies in immunofluorescent staining to de-
termine whether there were heterogeneous protein 
levels of these transcription factors. Indeed, differ-
ent expression levels of HNF1β and SOX9 were 
found in cells through the ductal tree in both hu-
man and mouse adult pancreas [17]. The signifi-
cance of the heterogeneity of the pancreatic duct 
transcriptional profile and the resultant differ-
ences in progenitor potential may explain the dis-
crepant findings of lineage tracing. These proc-
esses are currently being studied. 

CK20
Insulin
SOX9

 
Figure 1. Immunostaining of neogenesis. The figure shows 
two images of regenerating areas in the pancreas 4 days af-
ter partial pancreatectomy in the young adult rat. Insulin-
positive (blue) cells are budding from the pancreatic ducts 
(cytokeratin 20: red, Sox9: green). These cells are newly dif-
ferentiated from progenitors within the ducts as these focal 
areas could only be seen at 48 hr after surgery. 
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Lineage tracing using the insulin2 promoter as 
driver and looking for dilution of the label during 
chase periods initially sparked the controversy 
over neogenesis [18]. No evidence of dilution of the 
genetic marking of β-cells in rat insulin pro-
moter:CreER (Cre recombinase estrogen receptor 
T2) mice was found either in adults or after partial 
pancreatectomy, leading Dor et al. to conclude that 
replication was the mechanism of β-cell expansion 
in adult mice and neogenesis did not occur. Their 
approach of measuring dilution of marked cells is 
complicated by a possible leakiness of the Cre-lox 
system over time and the retention of tamoxifen 
for weeks that could have led to misleading con-
clusions [19, 20]. The tamoxifen doses commonly 
used to induce Cre-loxP recombination were shown 
in transplantation experiments to continue to label 
significant numbers of cells for weeks after ta-
moxifen treatment [20]. Additionally, the negative 
result in Dor et al. may be caused by their failure 
to examine the neonatal period or the new lobes 
after pancreatectomy (see below). Using the same 
approach, Nakamura et al. recently examined the 
neonatal period and reported that neogenesis oc-
curred in the second to third week after birth, but 
not in adults [21]. 

4. Experimental models of neogenesis 
The classic rodent models of pancreatic regen-

eration, partial pancreatectomy [22] and partial 
duct ligation [23], have provided evidence for both 
increased β-cell replication and neogenesis. Other 
experimental treatments, including dietary soy-
bean trypsin inhibitor [24], GLP-1 receptor ago-
nists [25], betacellulin [26], and cellophane wrap-
ping of the head of the pancreas (a partial duct ob-
struction) [27] have been reported to induce neo-
genesis. Additional strong evidence of formation of 
new β-cells by neogenesis comes from a number of 
transgenic models, including overexpression of in-
terferon-γ in the β-cells [28], overexpression of 
transforming growth factor (TGF) α in pancreatic 
ducts [29], and Pax4 ectopic expression in gluca-
gon-positive cells [30]. In the latter, β-cells are 
thought to originate from an α-cell lineage rather 
than a duct cell lineage. 

4.1 Partially pancreatectomized rodents 

Partial pancreatectomy (Px, 90% in rats, 60-
80% in mice) has resulted in substantial regenera-
tion of the adult pancreas with whole new lobes 
containing islets being formed accompanied by en-
hanced proliferation of pre-existing β and acinar 

cells [22, 31-33]. Regeneration is not limited to 
young animals; both replication and neogenesis 
could be demonstrated in retired breeder rats (500 
g) after 90% Px [34]. The partial Px model has 
been applied to mice using less extensive resection, 
often only 50%. At least two groups, using 60% Px 
in adult mice, reported neogenesis and enhanced 
replication [35, 36], while others reported en-
hanced replication only [18, 37, 38]. Their lack of 
observed neogenesis may be due to a lesser extent 
of resection of the pancreas or to the fact that the 
newly regenerated pancreatic lobes were not stud-
ied. In our own studies, we found less regeneration 
with less resection [39]. 

We have studied the 90% Px adult rat exten-
sively. In this model, the well-defined 10% rem-
nant regenerated, reaching 27% of the sham pan-
creatic weight and 45% β-cell mass of sham-
operated rats by 8 wks [22, 25]. While β-cell repli-
cation and hypertrophy contributed to this in-
creased mass, so did neogenesis. There was an ex-
pansion of the ductal tree, starting at the common 
pancreatic duct, with subsequent appearance of 
branching ductules in well-defined areas (foci of 
regeneration) that developed into new pancreatic 
lobes [22, 40, 41]. In this process, the mature pan-
creatic duct cells rapidly lost expression of key 
markers of the mature duct phenotype and repli-
cated [40]. At least, some duct cells regressed to a 
progenitor-like phenotype, and then appeared to 
redifferentiate through a pathway used during 
normal embryonic development, transiently ex-
pressing PDX1 protein [41] and the cascade of 
transcription factors seen in embryonic develop-
ment, including transient expression of the endo-
crine lineage-specific transcription factor neuro-
genin 3 [40]. As the focal areas of regeneration dif-
ferentiated into new pancreatic lobes, the islets 
within these areas resembled embryonic islets 
with a higher proportion of insulin-positive cells 
lacking MAFA expression. The proportion of 
MAFA+ insulin-positive cells increased as foci fur-
ther differentiated, but even in mature foci the 
proportion of MAFA-expressing β-cells was lower 
than in the remnant pancreas of the same animals 
[40]. Interestingly, new lobes of the pancreas may 
even form spontaneously in normal adult animals; 
occasional pancreatic lobes with high BrdU incor-
poration in all cell types were seen in 6-month old 
rats when most of the pancreas had almost none 
[3, 5]. 

4.2 Partial duct ligation in rodents 
The partial duct ligation model used for sev-

eral decades in rats [23, 42-45] has more recently 
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been transferred to mice. In a comprehensive 
study in rats, Wang et al. reported that, distal to 
the ligation, the β-cell population doubled in one 
week with increased numbers of small islets and 
islet cell clusters [23]. Since the β-cell labeling in-
dex (BrdU incorporation) could not account for the 
increase, they concluded that islet neogenesis had 
occurred. Using this rat model, gastrin was shown 
to stimulate β-cell neogenesis in the distal portion, 
but not in the pancreas proximal to the ligation. 
This effect occurred as the cholecystokinin B 
(CCKB) receptor, through which gastrin functions, 
was induced only in the distal portion [45]. 

With the ability to do lineage tracing in mice 
using the Cre-lox system, the partial duct ligation 
(PDL) model has been recently used extensively, 
but with conflicting results. Neogenesis after PDL 
was reported in several studies [6, 46], but in oth-
ers no marked β-cells were found after PDL [12, 
14]. Using neurogenin 3 reporter mice, Heimberg’s 
group showed that there was an induction of neu-
rogenin 3+ cells after partial duct ligation [46]. 
These cells arose in or adjacent to the pancreatic 
ducts and differentiated into islet cells in explants 
of embryonic pancreas from neurogenin 3null mice. 
Using SOX9 CreERT2 driver, Kopp et al. found 
enhanced neurogenin 3 expression after PDL, but 
with no labeled β-cells, suggesting that the Sox9-
labeled duct cells could start endocrine differentia-
tion, but may not have completed it [14]. 
Chintinne et al. suggested that this discrepancy 
may be due to the limited amount of islet regen-
eration in this model [47]. They concluded that 
PDL resulted in neogenesis, with a 2.2-fold in-
crease in small β-cell clusters that were highly pro-
liferative, but that the number of the proliferative 
β-cells accounted for less than 5% of the total β-cell 
mass at 2 weeks post PDL. 

Using Elastase (acinar-specific) or Pdx1 (global 
pancreas)-driven expression of Cre to target diph-
theria toxin ablation of the pancreatic tissue, Cris-
cimanna et al. showed that the severity of injury 
may determine the regenerative mechanism, and 
that in adult mice both new acinar and islet cells 
could arise from ductal cells [48]. 

4.3 Selected examples of other transgenic mice 
with induced neogenesis 

Besides the use of reporter mice and the Cre-
lox system for lineage tracing, transgenic mice 
with overexpression of various cytokines or growth 
factors have provided evidence of neogenesis. Stud-
ies were performed by the Sarvetnick group on the 
human insulin promoter using interferon-γ trans-

genic mice. The group found continual inflamma-
tory destruction of islets associated with continued 
proliferation of ductal epithelium and budding of 
new islets from the ducts [49]. The ductal expres-
sion of PDX1 protein and other transcription fac-
tors seen in embryonic pancreatic development 
suggested that this regeneration recapitulated the 
embryonic process [50, 51]. Similarly, enhanced 
PDX-1 expression (as might be expected with rep-
licated duct cells) and focal expression of Pax6 [52] 
were found within the metaplastic ducts after in-
duction of TGF-α in the exocrine pancreas in the 
metallothionein1-TGF-α mouse [53]. Also, 6% of 
the duct cells were immunostained for insulin [29], 
supporting the hypothesis of ongoing islet neo-
genesis. When metallothionein1-TGF-α mice were 
crossed with mice transgenic for rat insulin pro-
moter driving gastrin expression, the metaplastic 
ducts were extensively reduced and islet mass in-
creased, suggesting gastrin as a factor that could 
drive differentiation of progenitors to islets [29]. 

In mice in which β-cell replication was blocked 
by pancreatic deletion of FoxM1, compensatory 
growth of the β-cell mass did not occur during 
pregnancy, but normal β-cell mass was restored in 
the early postpartum period. This restoration was 
suggested to occur by neogenesis, as indicated by 
the increased number of endocrine clusters, in-
creased proportion of small islets, and increased 
neurogenin 3+ cells adjacent to the ducts [54]. A 
similar case of induction of neogenesis was seen in 
transgenic mice in which Pax4 was expressed in 
glucagon-expressing α-cells [30]. The ectopic ex-
pression of Pax4 reprogrammed α-cells to insulin-
producing β-cells, yet there was continual renewal 
of α-cells. The authors concluded that there was 
continued α-cell neogenesis in these mice. This 
conclusion was based on the evidence of replicating 
duct cells, rather than of hormone-positive cells, of 
labeling of hormone-positive cells after lentiviral 
reporter administered through the ductal tree only 
in the transgenic mice and not control mice, and of 
blockage of the replenishment of α-cells by a 
knockdown of neurogenin 3 [30]. 

If ductal cells gave rise to new endocrine cells 
after birth, one might expect some residual ex-
pression of duct markers in the newly formed cells. 
Such transient expression of duct cell markers has 
been reported in β-cells of newborn rats [55], in re-
generated islets after partial pancreatectomy [5, 
56], in grafts of purified human duct cells [57], and 
in islets of mice conditionally expressing Pax4 in 
glucagon-producing cells [30]. These observations 
suggest the recent passage of the new cells 
through the ductal phenotype. 
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5. Postnatal expansion of the endo-
crine pancreas in humans 

Unlike the experimental approaches that one 
can use in rodents, our knowledge of the growth of 
the human endocrine pancreas is limited to a few 
studies on autopsied pancreas. In a study of 46 au-
topsied pancreatic organs from children, the But-
ler group [58] reported the fractional insulin-
positive area was 2.6 ± 0.5% pancreatic area be-
tween birth and 2 yr and 1.3 ± 0.2% at 18.5-21.5 
yr. This decrease in the fractional area (relative 
volume or volume density) coincides with the ap-
proximate 5-fold expansion of the pancreas volume 
shown in a comprehensive study of the pancreas 
organs of living humans using computed tomogra-
phy (CT) [59]. The pancreatic parenchyma was es-
timated to be less than 10 cm3 in children under 
the age of 5, with growth to about 50 cm3 by age 
20, then stable levels for a couple of decades, fol-
lowed by a gradual decrease with age. However, 
there is a wide variation in parenchymal volume at 
any age, with 17-50 cm3 at age 11-13 years (n = 11) 
and 30-73 cm3 at age 19-21 years (n = 8). Even 
though this wide variation limits the accuracy of 
using these data for estimating β-cell mass in 
other children, the lack of other more accurate 
data led the Butler group to use an equation de-
rived from these data for estimating pancreatic 
volume and then β-cell mass (pancreatic volume X 
relative density of β-cells) [58]. 

Their conclusions were initially surprising. 
While the β-cell mass expanded several times from 
birth to adulthood, it occurred by increasing islet 
size through replication of preexisting β-cells 
rather than through an increasing number of is-
lets, with most of the growth occurring before the 
age of 5 and no secondary spurt of growth during 
adolescence. Similarly, a recent study by Gregg et 
al. on 30 autopsied pancreas organs from children 
from birth to 18 years also found little β-cell 
growth after 2 yr age [60]. However, in contrast to 
the Butler group study, they found no increased 
mean islet size from birth to older adult. Addition-
ally, their measures of neogenesis (CK19+insulin-
positive cells and insulin-positive cells within the 
duct epithelium) had small increases between 2 
and 7 years and again in adults. 

5.1 Evidence of compensatory expansion in the 
adult human pancreas 

In studies on autopsied adult pancreas organs, 
there seems to be some compensatory growth of 
the β-cells in case of obesity [61-66]. For example, 
the fractional area of β-cells (% insulin area/pan-
creatic area) was 1.7 ± 0.3% for lean non-diabetics 
and 2.6 ± 0.4% for obese non-diabetics in a Minne-
sota population [62]. From rodent models, we 
learned that compensatory elevations in β-cell 
mass can result from increased proliferation (hy-
perplasia), individual cell volume increase (hyper-

Table 1. Evidence of possible neogenesis in the human pancreas 
 

 

Specimen 
 

Evidence of neogenesis 
 

Reference 

Autopsied pancreas (birth to 20 yr) After 12 yr age, most had 0.5-1.2% Ins+ duct cells, some none Meier [58] 

Donor pancreas (7-70 yr) Unchanged low level of neogenesis (0.04% Ins+/duct) from 7 to 70 yr Reers [69]  

Autopsied (controls) Obese 1.2% Ins+ duct cells, lean 0.6±.2% Ins+ duct cells Meier [71, 83] 

Autopsied (chronic pancreatitis) Significantly increased glucagon+ or Ins+ duct cells Phillips [73]  

Biopsied (failed pancreatic transplant) Increased Ins+ ducts in transplants with recurrent autoimmunity Martin-Pagola [84]  

Donor pancreas (50-65 yr) Increased Ins+ structures less than 330 mm2 area in recent T2D lean 
and obese non diabetic or recent T2D patients 

Hanley [65] 

Surgical resection (in 3 patients with re-
current hypoglycemia 1-2 yr after Roux-
en-Y gastric bypass) 

Number of hormone- positive cells budding from many small ductal 
structures  

Patti [75] 

Autopsied pancreas (pregnant and post-
partum) 

1.4 x increased fraction of β-cell area, increased population of tiny is-
lets, increased individual scattered Ins+ cells and Ins+ cells in ducts  

Butler [74]  

Donor pancreas (50-yr Medalists with 
long-term insulin-dependent diabetes) 
 

Lobular pattern of single/ doublet insulin -positive cells in paren-
chyma and in duct epithelium 

Keenan [82]  
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trophy), and new differentiation from stem/pro-
genitor cells. Yet, β-cell proliferation in adult hu-
mans has been reported as extremely low, and 
greatly enlarged islets are rarely found. In autop-
sied human pancreata, β-cell replication (Ki67+ β-
cells) drops to less than 0.2% already by 5 years of 
age [58], in another study to about 0.5% in adoles-
cents [60], and can be almost negligible in adults 
[60, 62, 67, 68]. However, this low level of detec-
tion may result from the tissue being only re-
trieved after death. In a recent study on human 
organ donor pancreata, all pancreata had Ki67+ β-
cells, with a stable, albeit low, percentage in do-
nors from 40 to 65 years of age [69]. In another 
study, donor pancreata had little or no Ki67+ insu-
lin-positive cells, but grafts of isolated islets from 
such donors had 0.22 ± 0.03% Ki67+ insulin-
positive cells after 4 week transplantation in im-
munocompromised normoglycemic mice; this level 
was also found in frozen human pancreas obtained 
at surgery [70]. An important concept recently em-
phasized by Chintinne et al. in rodents is that, in 
the adult, the large β-cell population can provide a 
significant pool of proliferating β-cells even though 
the proliferation frequency (% Ki67+ cells) is lower 
than in neonates [8]. 

Using insulin-positive cells found in the ductal 
epithelium, insulin-positive CK+ cells, and small 
clusters of 1-3 insulin-positive cells scattered in 
the parenchyma as identifiers of neogenetic islets, 
active neogenesis in the adult human pancreas is 
suggested by a number of studies (Table 1). In 
adults, the frequencies reported are in the range of 
0.4-0.6% insulin-positive duct cells whether in or-
gan donors or autopsied pancreas, although in 
some pancreata no insulin-positive cells were de-
tectable [58, 69, 71, 72]. The dynamic nature of 
these insulin-positive cells is suggested by their 
increase seen in pancreas organs from obese pa-
tients [71, 72], in patients with chronic pancreati-
tis [73] during pregnancy [74], and in patients re-
ceiving partial pancreatectomy due to recurrent 
hypoglycemia 1-2 years after gastric bypass [75]. 

Perhaps the most striking evidence of neo-
genesis in adult humans is a recent study on au-
topsied pancreas organs from pregnant, post-
partum and non-pregnant women [74]. The rela-
tive volume of β-cells was increased by up to 40% 
in the pregnant (n = 18) compared to non-pregnant 
women (n = 20). There were no differences in repli-
cation, apoptosis, or individual cell size, yet the 
populations of small islets/clusters of β-cells, insu-
lin-positive cells within the ducts, and individual 
scattered β-cells all doubled. This finding in preg-
nancy in humans differs from that in mice, in 

which enhanced replication is the main mecha-
nism [76]. Together, these data strongly support 
neogenesis as a mechanism for the expansion of β-
cells under normal physiological and pathophysi-
ological conditions in humans. 

5.2 Pancreas of type 1 diabetes patients 
In spite of the commonly held belief that all β-

cells are destroyed in type 1 diabetes, a number of 
reported cases of long-term type 1 diabetes have 
some islets with a few insulin-positive cells [61, 77-
79]. Gianani et al. reported that only 3 of 13 pan-
creas organs after 10 years duration of childhood 
onset diabetes had any islets positive for insulin, 
and 2 of these must be considered as not being 
classic type 1 patients since there were no insulin-
deficient (pseudo-atrophic) islets [80]. In cases 
studied by Gepts and de Mey, an almost complete 
loss of β-cells by 1 year was observed if onset was 
before 7 years of age, yet 40% of 43 patients with 
onset after 7 years of age and 10-30 years duration 
of diabetes had some islets with residual β-cells 
[81] (reviewed in [77]). Similarly, with multiple (8) 
samples examined per pancreas, Lohr and Kloppel 
reported 43% of 23 patients with disease duration 
of between 11 and 54 years had islets with resid-
ual β-cells in at least one lobe [61]. Meier et al. re-
ported that 38% of the 42 pancreatic organs from 
patients with type 1 diabetes and duration ranging 
from 4 to 67 years had at least some islets with re-
sidual β-cells; 88% had scattered β-cells within the 
parenchyma, but the duration of disease was not 
provided for the subjects with residual β-cells [78]. 

In our study of post-mortem pancreata from 
the well-characterized Joslin 50-year Medalist co-
hort of people with over 50 years of type 1 diabetes 
(duration 64.3 ± 1.9 years, n = 28; all but 2 with 
high risk DR3 and/or DR4 allele), we found that all 
had scattered single or small clusters of insulin-
positive cells in the parenchyma of only some 
lobes, and 68% had some islets with at least a few 
insulin-positive cells [82] (and unpublished data). 
A critical, but unanswerable, question about these 
pancreata from subjects with long-standing type 1 
diabetes is whether the insulin-positive cells have 
escaped autoimmune destruction or whether they 
were formed only recently. If the latter were true, 
these cells could represent the continual attempt 
at regeneration noted by Warren [2], as quoted at 
the beginning of this chapter. 

6. Conclusions 
As outlined above, there is strong evidence 

that neogenesis happens normally after birth in 
rodents both in the neonatal period and after some 
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injury, and that it can be induced by different 
stimuli. It remains the question of the quantitative 
contribution of postnatal neogenesis to the β-cell 
mass. Genetically manipulated mice show convinc-
ingly that the pathway of neogenesis can be in-
duced in adult rodents under certain conditions. 
Further work on the stimuli necessary for this in-
duction may provide a path to replenishing β-cells 

in situ in type 1 diabetes patients. 
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